
Abstract   Space-variant ultrasound attenuation in tissue is one of 
the phenomena that should be taken into account when 
reconstructing images from ultrasonographic data. This 
contribution presents a method to estimate automatically one-
dimensional attenuation profiles along isolated “rays”, forming 
ultrasonic images. The estimates are based entirely on digital 
ultrasonographic data, without any reference to a-priori 
knowledge on anatomical structures involved. Using a standard 
model of ultrasound propagation, the “layered” and discretised 
formulation allowed for simplified, thus manageable, least-
squares-error estimation of the attenuation profiles. The results 
of analysing ultrasonographic data obtained from biological 
objects, as presented on figures, are rather promising. 
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I. INTRODUCTION 

Contemporary medical B-mode imaging uses wide-band 
ultrasonic impulses that are attenuated due to several physical 
phenomena, when travelling through the imaged tissues. The 
space-variant and frequency-dependent attenuation should be 
explicitly taken into account when reconstructing the image 
to prevent disturbing artefacts. Several papers, e.g. [3-5], 
have been published on methods of reconstructing the image 
using a known attenuation map of the imaged area, but a 
reliable and simple estimation of the attenuation distribution 
is still a challenging problem. When excluding the 
approaches based on a-priori known tissue types in the range 
of the image, the attenuation distribution has to be estimated 
automatically by analysing the received standard ultrasonic 
echo, as any other measurements are usually not feasible in 
clinical routine. The presented contribution introduces a 
simplifying approach enabling to determine individual 
attenuation profiles along each image ray from the measured 
ultrasonographic data automatically, taking into account the 
properties of ultrasound propagation. 
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II. METHODOLOGY 

The sonographic scan-head transmits a wide-band 
ultrasonic impulse that travels along a straight path (the 
“ray”) with the decreasing wave-amplitude as  

                           ( ) ( ) ( )zzfefAfzA ,,0, µ−= ,     (1) 

where ( )fzA ,  is the amplitude of the wave component at the 

frequency f  in the distance z from the transducer and 

( )zf ,µ  is the local attenuation coefficient. Let us consider a 

certain frequency range of the signal, ( )21 , fff ∈ , and the 

propagation with only a single reflection or scattering on each 
inhomogeneity on the path, thus neglecting any secondary 
reflections. The ultrasound absorption coefficient is, as in [6], 
supposed linearly dependent on frequency, ( ) ff µµ = . 

Constant velocity c of ultrasound propagation in tissue is 
assumed. 

The used model of the imaged tissue is formed as a 
composition of M  homogeneous layers along a ray (fig. 1). 
Every layer has its constant attenuation coefficient iµ , its 

depth i∆  and its local signal-return-ratio iσ , produced both 

by specular reflection and/or backscattering distributed in the 
layer. If there are specular reflections due to abrupt acoustical 
impedance changes on the ray trace, the corresponding thin 
areas are treated as separate layers.  

 
Fig. 1  Schematic example of tissue model   
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The transducer emits a short impulse at time 0=t  and 
then it scans the returning echo. The signal received in time 

1t  was obviously reflected/scattered in the tissue in time 
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and it has passed )( 1tM  layers, each of them twice, the 
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be shown, based on (1), that the amplitude of the echo 
component at the frequency f  is  
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On the first look, it may be argued that this expression does 
not take into account the phase relations among individual 
returned components of the wave. Nevertheless, according to 
the problem definition, we are not trying to compensate for 
the interference, causing e.g. the speckles, but exclusively for 
the differing attenuation of the signal received at different 
time instants.  

Applying logarithmic transform to (1a), which is always 
possible as all its components are positive, yields   
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( )

( )tM

tM

i
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for the interval ( )21 , ff . Here, is  can be interpreted as a 

logarithmic measure of the local signal-return-ratio. The 
primary aim of the analysis is to determine the vector µ  but 

as the only quantity accessible to measurement is ( )fzA , , all 

other quantities on the right hand side of (2) must be 
determined or estimated as well.  

When using the (Hilbert-transform derived) 
envelope of the received wide-band radio-frequency signal, 
we obtain the resulting integral amplitude of the echo, which 
can be regarded, on average, approximately proportional to 
the amplitude mean value with respect to frequency. Working 
with the mean values removes the frequency dependence 
from the formulation. Although this approximation may seem 
to ignore one important aspect, the experimental results 
support it as a sound simplification, making the problem 
reasonably tractable.  This way, we obtain 
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dffzAzy  and approximate it by the 

measured signal value ( )( )zAln . After a few simplifying steps 

and integration we get 
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Our aim is to estimate iµ  and  is  numerically, utilising 

the known measurement  ( )zy . The tissue model is initially 

chosen as a (small) number of layers with corresponding 
thicknesses i∆~  and is then automatically refined during the 

computation thus enabling for arbitrarily complex structure. 
For the computation, the equation (3), after some 
modifications, is discretised in z  with the space 
sampling period cTz =∆ , where the time sampling period 

T  is given by the A/D converter of the scanner. The total 
number N of samples on the ray is therefore fixed while the 
number M of layers approximating the tissue structure is 
iteratively updated. After discretisation, the mathematical 
model acquires the matrix form  

luX = ,                  (4) 

where  
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( u  containing the sought corrections iµ∂  and is∂  to 

arbitrarily chosen initial estimates i,0µ  and is ,0 ,  see [9]) , and 
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  Because the size of X  is MN 2× ( MN 2> ), the 
equation system is over-determined and can only be solved in 
the sense of  square-error minimisation. According to [8], this 
estimate is 

( ) lXXXu TT 1ˆ −= .                (4a) 

The details of the iterative algorithm including the initial 
estimates and the refinement strategy are described in [9]. 



III. EXPERIMENTAL RESULTS 

The designed algorithm has been extensively tested on 
radio-frequency ultrasonographic data measured on both, a 
well identifiable tissue-phantom, and a biological in-vivo 
specimen  (pig’s heart).  The  data  were  scanned  with   2964  

 

 
Fig. 2  Measured phantom A-mode signal (detected envelope) 

 

 
Fig. 3 Estimated attenuation profile ( )zµ  

 
Fig. 4  Restored A-mode signal 

radio frequency samples on a ray, in the frequency range 
from 2.5 to 7.5 MHz, and the number of rays in one frame (a 
fan) was 78.  

Example results of the extensive experimentation are 
presented on figures. On fig.2, the Hilbert-transform derived 
signal-envelope along a ray is depicted as an example of input 
data measured on a phantom. The corresponding attenuation 
profile derived from the data is presented on fig. 3 and the 
signal, restored accordingly, on fig. 4. 

A  scan of  a pig’s heart  (in-vivo)  is  shown  on  fig. 5,  
in  video (envelope) signal representation. The attenuation 
map, as the result of the described computation, utilising the 
same data as those used for the image fig.5, is presented on 
fig. 6 (higher brightness represents a higher attenuation).   

   

Fig. 5 Ultrasonic image of a pig’s heart 

 

Fig. 6  Computed attenuation map of the object on fig. 5     



IV. CONCLUSIONS 

The suggested method to estimate the ultrasound 
attenuation map automatically from the measured 
ultrasonographic data seems to provide a reasonable 
approximate solution to the given problem, thus forming a 
step forward on the way to fully automatic attenuation 
compensation in ultrasonography. The model of ultrasound 
propagation has been simplified by averaging the frequency 
dependence and also by neglecting the noise effects, then 
discretised and the solution sought by the least-square-error 
method. In spite of the mentioned simplifications, the method 
has proved to work reasonably well for available sets of test 
data.  

Nevertheless, the independent analysis of individual ray 
A-mode signals does not take into account the lateral 
correlation among data in a scan (frame), thus producing 
some artefacts in the derived maps: the relatively large 
differences between neighbouring A-mode lines are in some 
cases rather unrealistic. Therefore, the two-dimensional 
analysis of the problem, taking into account mutual 
dependencies among neighbouring rays, is planned as the 
next step in the project.  
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